The value of limx→2e3x-6-1sin2-x is
32
3
-3
-1
Explanation of the correct option.
Compute the required value.
Given : limx→2e3x-6-1sin2-x
=e6-6-1sin2-2=1-1sin0=00
Since, it is 00 form, apply L.Hospital's rule,
limx→2e3x-6(3)cos2-x(0-1)=-e6-6(3)cos0=-3
Therefore, the value of limx→2e3x-6-1sin2-x is -3.
Hence,option C is the correct option.