The value of limx→π2sincosxcosxsinx-cscx is
∞
1
0
-1
Explanation of the correct option.
Compute the required value.
Given :limx→π2sincosxcosxsinx-cscx
⇒limx→π2sincosxcosx×limx→π2cos2xsinx-1sinx⇒1×limx→π2cos2xsinxsin2x-1⇒limx→π2cos2xsinx-cos2x⇒limx→π2-sinx⇒-1
Therefore, the value of limx→π2sincosxcosxsinx-cscx is -1.
Hence,option D is the correct option.
The value of ((22)2)2 is: