The value of ∫02πxsin8xsin8x+cos8xdx equal to?
2
4
22
π2
Explanation for the correct answer:
Step 1: Compute the required value.
Let I=∫02πxsin8xsin8x+cos8xdx ...(i)
⇒ I=∫02π2π-xsin82π-xsin82π-x+cos82π-xdx ∵∫0afxdx=∫0afa-xdx
⇒ I= ∫02π2π-xsin8xsin8x+cos8xdx ...(ii)
Step 2: Add the equation i,(ii)
⇒ 2I=∫02π2πsin8xsin8x+cos8xdx
⇒ I=π∫02πsin8xsin8x+cos8xdx
⇒ I=2π∫0πsin8xsin8x+cos8xdx ∵∫02afxdx=2∫0afxdxiffa-x=fx
⇒ I=4π∫0π2sin8xsin8x+cos8xdx...(iii) ∵∫02afxdx=2∫0afxdxiffa-x=fx
⇒ I=4π∫0π2sin8π2-xsin8π2-x+cos8π2-xdx ∵∫0afxdx=∫0afa-xdx
⇒ I=4π∫0π2cos8xcos8x+sin8xdx ...(iv) ∵sinπ2-x=cosx,cosπ2-x=sinx
Step 3: Add the equation iii,iv
⇒ 2I=4π∫0π2cos8x+sin8xcos8x+sin8xdx
⇒ I=2π∫0π21dx
⇒ I=2πx0π2
⇒ I=2ππ2-0
⇒ I=π2
Hence, the value of ∫02πxsin8xsin8x+cos8xdx is π2
Hence, option (D) is the correct answer.