The value of the integral ∫0π23cosθ(cosθ+sinθ)5dθ equals
Evaluate the given integral.
Given:∫0π23cosθ(cosθ+sinθ)5dθ
Let I=∫0π23cosθsinθ+cosθ5dθ
⇒I=3∫0π2cosθsinθ+cosθ5dθ...(i)⇒I=3∫0π2sinθcosθ+sinθ5dθ...(ii)∵∫0af(x)dx=∫0af(x-a)dx
By adding (i) and (ii), we get
∴2I=3∫0π2cosθ+sinθcosθ+sinθ5dθ⇒2I=3∫0π21cosθ+sinθ4dθ⇒2I=3∫0π21cosθ41+sinθcosθ4dθ⇒2I=3∫0π21cosθ21+sinθcosθ4dθ⇒2I3=∫0π2sec2θtanθ+14dθ∵sinxcosx=tanx,cosx=1secx
Let tanθ=t2
∴sec2θdθ=2tdt
⇒2I3=∫0∞2t(t+1)4dt⇒I3=∫0∞t(t+1)4dt⇒I3=∫0∞1(t+1)3-1(t+1)4dt⇒I=-32(t+1)2+1(t+1)30∞⇒I=32-1⇒I=12
Hence, the value of the integral ∫0π23cosθ(cosθ+sinθ)5dθ equals 12.