wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral 0π23cosθ(cosθ+sinθ)5dθ equals


Open in App
Solution

Evaluate the given integral.

Given:0π23cosθ(cosθ+sinθ)5dθ

Let I=0π23cosθsinθ+cosθ5dθ

I=30π2cosθsinθ+cosθ5dθ...(i)I=30π2sinθcosθ+sinθ5dθ...(ii)0af(x)dx=0af(x-a)dx

By adding (i) and (ii), we get

2I=30π2cosθ+sinθcosθ+sinθ5dθ2I=30π21cosθ+sinθ4dθ2I=30π21cosθ41+sinθcosθ4dθ2I=30π21cosθ21+sinθcosθ4dθ2I3=0π2sec2θtanθ+14dθsinxcosx=tanx,cosx=1secx

Let tanθ=t2

sec2θdθ=2tdt

2I3=02t(t+1)4dtI3=0t(t+1)4dtI3=01(t+1)3-1(t+1)4dtI=-32(t+1)2+1(t+1)30I=32-1I=12

Hence, the value of the integral 0π23cosθ(cosθ+sinθ)5dθ equals 12.


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon