Question
\(2 x^2 + 16x + 30 = 0\)
Solution
Quadratic Formula Method
1
\( \text{Compare } 2 x^{2} + 16 x + 30 = 0 \text{ with the standard quadratic equation } ax^2 +bx+c = 0 \text{ and find the values of a, b, and c } \)
\( a = 2 \text{ , } b = 16 \text{ , } c = 30 \)
2
Calculate the value of the discriminant (D)
\( D = 16 \)
3
Determine the nature of the roots
The roots are real and distinct
4
\( \text{ Apply the quadratic formula } \)
\(x = \frac{-16 \pm 4}{4}\)
5
\( \text{Find the roots of given quadratic equation } 2 x^{2} + 16 x + 30 = 0 \)
\( \text{The roots are } -3 \text{ and } -5 \)
Similar Questions
Quadratic Equation
\(4x^2 + 12x + 9 = 0\)
Quadratic Equation
\(x^2+4x +4=0\)
Quadratic Equation
\(2 x^2 + 16x + 30 = 0\)
Quadratic Equation
\( x^2 -x-6 = 0\)
Quadratic Equation
\(3x^2 - 5x + 2 =0\)
Quadratic Equation
\(x^2 + 4x + 5 = 0 \)
Quadratic Equation
\( x^2 + 6x + 9 =0 \)
Quadratic Equation
\( x^2 -8x + 15 = 0\)
Quadratic Equation
\(x^2 + 6x + 5 = 0 \)
Quadratic Equation
\( x^2 + 2x + 1 =0 \)
Explore Topics
Algebra
Functions
Conversions
Pre Algebra
Trigonometry