1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
∫ 0 π 11+sin ...
Question
∫
0
π
1
1
+
sin
x
d
x
Open in App
Solution
Let
I
=
∫
0
π
1
1
+
sin
x
d
x
.
Then
,
I
=
∫
0
π
1
-
sin
x
1
+
sin
x
1
-
sin
x
d
x
⇒
I
=
∫
0
π
1
-
sin
x
1
-
sin
2
x
d
x
⇒
I
=
∫
0
π
1
-
sin
x
cos
2
x
d
x
∵
sin
2
x
+
cos
2
x
=
1
⇒
I
=
∫
0
π
sec
2
x
-
sec
x
tan
x
d
x
⇒
I
=
tan
x
-
sec
x
0
π
⇒
I
=
tan
π
-
sec
π
-
tan
0
-
sec
0
⇒
I
=
0
+
1
-
0
-
1
⇒
I
=
1
+
1
⇒
I
=
2
Suggest Corrections
0
Similar questions
Q.
∫
0
π
1
1
+
sin
x
d
x
equals
(a) 0
(b) 1/2
(c) 2
(d) 3/2
Q.
The value of
∫
π
0
1
1
+
e
cos
x
dx
is