wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

0π/2cos2 xsin x+cos x dx

Open in App
Solution

We have,I=0π2cos2xsinx+cosxdx .....1=0π2cos2π2-xsinπ2-x+cosπ2-xdx=0π2sin2xcosx+sinx dx .....2

Adding 1 and 22I=0π2cos2xsinx+cosx+sin2xcosx+sinxdx= 0π21sinx+cosxdx=0π212tanx21+tan2x2+1-tan2x21+tan2x2dx

=-0π21+tan2x2tan2x2-2tanx2-1 dx=-0π2sec2x2tan2x2-2tanx2-1 dxPutting tanx2=t12sec2x2dx=dtsec2x2dx=2dtWhen x0; t0and xπ2; t1

2I=-201dtt2-2t-1I=-01dtt-12-22=-122logt-1-2t-1+2 01=-122log-1-log-1-2-1+2 =-122log 1-log2+12-1

=-122-log2+12-1 =122log2+12+12-12+1=122log2+122-1=122log2+12=122×2 log2+1=12log2+1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon