wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

0π/2sin x dx

Open in App
Solution

abfxdx=limh0 hfa+fa+h+fa+2h+...+fa+n-1hwhere h=b-an
Here a=0, b=π2, fx=sinx, h=π2-0n=π2nTherefore,I=0π2sinxdx =limh0 hf0+f0+h+...+f0+n-1h =limh0 hsin0+sinh+sin2h+...+sinn-1h =limh0 hsinn-1h2sinnh2sinh2 =limh0 h2sinh2×2sinπ4-h2sinπ4 Using nh=π2 =limh0h2sinh2×limh02sinπ4-h2sinπ4 =2sinπ4sinπ4=2×12×12=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon