Let z=cosα+cosβ+cosγ and γ be fixed.
Then z=2cosα+β2cosα−β2+cosγ
=2sinγ2cosα−β2+cosγ [as α+β2=90−γ2]
∴γ is constant,z will be maximum when cosα−β2 is maximum,
i.e. cosα−β2=1=α=β
Thus,
when angle gamma is fixed, z will be maximum if α=β
Similarly, angle beta is fixed, z will be maximum if γ=α
and when angle gamma will be maximum if β=γ
∴z will be maximum if α=β=γ
but α+β+γ=180∘
∴α=β=γ=60∘
∴zmax=cos60∘+cos60∘+cos60∘=32
∴ In triangle ABC, ∑cosA≤32
& ∑cosα≥−32