wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

0logx+1x 11+x2 dx=

(a) π ln 2
(b) −π ln 2
(c) 0
(d) -π2ln 2

Open in App
Solution

(a) π ln 2

0log x+1x 11+x2dx
Substitute x = tan θ
⇒ dx = sec2 θ dθ.
when,
x = 0 ⇒ θ = 0
x=θ=π20π2 tan θ+1tan θ11+tan2θ×sec2θ dθ0π2log tan2θ+1tanθ 11+tan2θ×sec2θdθ0π2log sec2θtan θ1sec2θ×sec2θdθ 1+tan2θ=sec2θ0π2log sec2θtan θdθ0π2log 1sin θ.cos θdθ-0π2log sin θ.cos θdθ-0π2 log sin θ+log cos θdθ-0π2log sin θdθ-0π2log cos θ dθ
Let us consider,
0π2log sin θdθ=I .....(i)I=0π2log sin π2-θdθ=0π2log cos θdθ .....iiAdding i and ii2I=0π2log sin θdθ+0π2log cos θdθ =0π2log sin θ.cos θdθ =0π2log sin 2θdθ-0π2log 2dθLet us consider 2θ=t2dθ=dt2I=120πlog sin tdt-π2log 22I=220π2log sin tdt-π2log 2 sin θ is positive in both 1st and 2nd quadrants2I=I-π2log 22I-I=-π2log 2I=-π2log 2, where I=0π2log sin θdθNow,-0π2logsin θdθ-0π2log cos θdθ-20π2log sin θdθ=-2×I=-2×-π2log 2 where I=-π2log2=π log 2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon