wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

01log1+x1+x2 dx

Open in App
Solution

We have,I=01log 1+x1+x2 dxPutting x=tan θdx=sec2 θ dθWhen x0 ; θ0and x1 ; θπ4Now, integral becomes

I=0π4log 1+tan θsec2 θ sec2 θ dθI=0π4log 1+tan θ dθ .....1I=0π4log1+tan π4-θ dθ 0afxdx=0afa-xdx=0π4log1+tanπ4-tan θ1+tanπ4 tan θ dθ=0π4log1+1-tan θ1+tan θ dθ=0π4log21+tan θ dθI=0π4log 2-log 1+tan θ dθ .....2

Adding 1 and 2, we get2I=0π4log 2 dθ2I=log 2θ0π42I=π4log 2I=π8log 201log1+x1+x2dx=π8log 2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Improper Integrals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon