1.2+2.22+3.23+⋯+n.2n=(n−1)2n+1+2.
Let P(n) = 1.2+2.22+3.23+⋯+n.2n=(n−1)2n+1+2.
For n = 1
P(1)=1.21=(1−1)21+1+2⇒2=0+2⇒2=2
∴ P (1) is true
Let P(n) be true for n = k
∴P(k)=1.2+2.22+3.22+⋯+k.2k=(k−1)2k+1+2For n=k+1P(k+1)=1.2+2.22+3.23+⋯+k.2k+(k+1).2k+1=(k+1−1)2k+1+1+2=k.2k+1+2+(k+1)2k+1=2k+1(k−1+k+1)+2=2k+1×2k+2=k.2k+2+2
∴P(k+1) is true
Thus P (k) is true ⇒P(k+1) is true
Hence by principle fo mathematical induction,
P(n) is true for al nϵN.