12cos-1[1-x][1+x]=
cot-1x
tan-1x
Explanation for the correct option:
Let x=tan2θ
⇒θ=tan-1x
Now, given expression becomes
12cos-1[1-x][1+x]=12cos-1[1–tan2θ][1+tan2θ]
=12cos-1×cos2θ
=2θ2
=θ
=tan-1x
Hence, Option ‘B’ is Correct.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.