1−2ab−(a2+b2)=?(a) (1+a−b)(1+a+b)(b) (1+a+b)(1−a+b)(c) (1+a+b)(1−a−b)(d) (1+a−b)(1−a+b)
1−2ab−(a2+b2)=1−2ab−a2−b2=1−(a2+b2+2ab)=1−(a+b)2=(1+a+b)(1−a−b)
If |a|<1 and |b|<1, then the sum fo the series 1+(1+a)b+(1+a+a2)b2+(1+a+a2+a3)b3+...is