13+23+33+⋯+n3=[n(n+1)2]2
P(n)=13+23+33+⋯+n3=[n(n+1)2]2
For n = 1
P(1)=1=1[1(1+1)2]2⇒1=1
∴P(1) is true
Let P (n) be true for n = K
∴P(k)=13+23+33+⋯+K3=[k(k+1)2]2Forn=k+1P(k+1)=13+22+33+⋯+k3+(k+1)3=[k(k+1)2]2+(k+1)3=(k+1)2[k24+k+1]=(k+1)2[k2+4k+44]=(k+1)2(k+2)24=[(k+1)(k+2)2]2
∴ P (k + 1) is true.
Thus P (k ) is true \Rightarrow (k +1) is true.
Hence by principle of mathematical induction,
P(n) is true for all nϵN.