wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) = n(4n2+6n-1)3

Open in App
Solution

Let P(n) be the given statement.
Now,
P(n)=1.3+3.5+5.7+...+(2n-1)(2n+1)=n(4n2+6n-1)3Step 1:P(1)=1.3 =3 =1(4×12+6×1-1)3Hence, P(1) is true.Step 2:Let P(m) be true.Then,1.3+3.5+...+(2m-1)(2m+1)=m(4m2+6m-1)3To prove: P(m+1) is true.That is,1.3+3.5+...+(2m+1)(2m+3)=(m+1)4(m+1)2+6m+1-13Now, P(m) is equal to: 1.3+3.5+...+(2m-1)(2m+1)=m(4m2+6m-1)31.3+3.5+...+(2m-1)(2m+1)+(2m+1)(2m+3)=m(4m2+6m-1)3+(2m+1)(2m+3) Adding (2m+1)(2m+3) to both sidesP(m+1)=m(4m2+6m-1)+3(4m2+8m+3)3P(m+1)=4m3+6m2-m+12m2+24m+93=4m3+18m2+23m+93P(m+1)=4m(m2+2m+1)+10m2+19m+93 =4m(m+1)2+(10m+9)(m+1)3 =(m+1)4m(m+1)+10m+93 =(m+1)3(4m2+8m+4+6m+5) =(m+1)4(m+1)2+6m+1-13Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all nN.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Modulus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon