The correct option is
A True
Let
P(n):1+3+5+....+(2n−1)=n2Step 1 :
Put n=1
Then, LHS = 1
RHS = 12=1
Therefore, LHS = RHS
⟹P(n) is true for n=1.
Step 2 :
Assume that P(n) is true for n=k.
Therefore, 1+3+5+....+(2k−1)=k2
Adding 2k+1 on both sides, we get,
1+3+5+....+(2k−1)+(2k+1)=k2+(2k+1)=(k+1)2
Therefore,
1+3+5+....+(2k−1)+(2(k+1)−1)=(k+1)2
⟹P(n) is true for n=k+1.
Therefore, by the principle of mathematical induction P(n) is true for all natural numbers n.