The correct option is B 2n+1n−2
Let Tn is the nth term
Then sum upto n term is
S=1+3+7+15+31+......+Tn ...(1)
Again S=1+3+7+15+......+Tn−1+Tn ...(2)
Subtracting (2) -(1) we get
0=1+[2+4+8+16+.....(Tn−Tn1)]−Tn
Tn=1+2+22+23+24+ upto n terms
Therefore
S=∑Tn=∑2n−1=(2+22+23+......+2n)n=2(2n−12−1)n=2n+1n−2n