1 + 3 + 7 + 15 + 31 + ....... to n terms =
Let Tn be the nth term and S the sum upto n terms.
S = 1 + 3 + 7 + 15 + 31 + ..........+ Tn
Again S = 1 + 3 + 7 + 15 + .......... + Tn−1+Tn
Subtracting, we get 0 = 1 + {2 + 4 + 8 + .........(Tn−Tn−1)} - Tn
∴ Tn = 1 + 2 + 22 + 23 + ......... upto n terms
= 1(2n−1)2−1 = 2n - 1
Now S = ∑Tn = ∑2n - ∑1
= (2 + 22 + 23 + ...........+ 2n) - n
= 2 ( 2n−12−1) - n = 2n+1 - 2 - n
Aliter : 1 + 3 + 7 + ........ + Tn
= 2 - 1 + 22 - 1 + 23 - 1 + ........ + 2n - 1
= (2 + 22 + ......... + 2n) - n = 2n+1 - 2 - n
Trick: Check the options for n = 1, 2.