The correct option is
D n(n+1)(2n+1)(3n2+3n−1)30S(n)=14+24+34+⋯+n4∴ S(n) will be a fifth degree polynomial of the form.
S(n)=an5+bn4+cn3+dn2+en+f
∵S(0)=0⇒f=0
∵S(n−1)=a(n−1)5+b(n−1)4+c(n−1)3+d(n−1)2+e(n−1)
∵S(n)−S(n−1)=(5a)n4+(−10a+4b)n3+(10a−6b+3c)n2+(−5a+4b−3c+2d)n+(a−b+c−d+e)
∵ This has to be equal to
n4,
∴5a=1−10a+4b=010a−6b+3c=0−5a+4b−3c+2d=0a−b+c−d+e=0⇒a=15,b=12,c=13,d=0,e=−130⇒S(n)=15n5+12n4+13n3−130n
By simplification we get,
⇒S(n)=n(n+1)(2n+1)(3n2+3n−1)30