14[√3cos23°-sin23°]=
cos43°
cos7°
cos53°
Noneofthese
Explanation for the correct option:
Given, 14√3cos23°-sin23°
=12√3cos23°2-1.sin23°2
=12√32cos23°–12sin23°
=12cos30°cos23°−sin30°sin23°
Since, cos(A+B)=cosAcosB–sinAsinB,
=12[cos(30°+23°)]
=12cos(53°)
Hence, Option ‘D’ is Correct.
Find the remainder when f(x)=3x4+2x3−x23−x9+227 is divided by g(x)=x+23.