wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(1)A \(100~\mu F\) capacitor in series with a \(40~\Omega \) resistance is connected to a \(110~V, 60~Hz\) supply.
What is the maximum current in the circuit?

(2) A \(100~\mu F\) capacitor in series with a \(40~\Omega \) resistance is connected to a \(110~V, 60~Hz\) supply.
What is the time lag between the current maximum and the voltage maximum?

Open in App
Solution

(1) Step 1: Find circuit impedance

Given,\( V_{rms} = 110~V, f= 60~Hz\)
\(C=100~\mu F, R=40~\Omega \)

The circuit impedance is given by \( Z=\sqrt{ R^2+ X_C^2}= \sqrt{R^2+ \left ( \dfrac{1}{\omega C} \right )^2} \)


\( Z= \sqrt{(40)^2+ \left ( \dfrac{1}{2 \pi \times 60 \times 100 \times 10^{-6}} \right )^2} \)

\( Z= \sqrt{(40)^2+ (26.52 )^2} \)

\(Z= 47.99 ~\Omega \approx 48~\Omega \)

Step 2: Find maximum current

For an RC circuit if, \(V= V_0 \sin \omega t\)

In RC circuit, current \((I)\) lags from voltage \((V)\).

\(I= I_0 \sin( \omega t + \phi )\)

\(I = \dfrac{V_0}{Z} \sin( \omega t + \phi )\)

Then the maximum current is,

\(I_0 = \dfrac{V_0}{Z} \) ....(i)

Where, \( V_0 = \sqrt{2} V_{rms} = 110 \sqrt{2} V\)

Hence from equation (i),

\( I_0 = \dfrac{110 \sqrt{2} }{48} =3.24~A\)

\( I_0 =3.24~A \)

Final Answer: \( 3.24~A \)

(2)Step 1: Calculate phase angle

Given,\( V_{rms} = 110~V, f= 60~Hz\)
\(C=100~\mu F, R=40~\Omega \)
Inductive reactance,

\( X_C = \dfrac{1}{ \omega C} =\dfrac{1}{ 2 \pi f C}\)

\( = \dfrac{1}{ 2 \pi \times 60 \times 100 \times 10^{-6}}\)

\( = 26.52 \Omega \)


Now, from phasor diagram

\( \tan \phi = \dfrac{X_C}{R}\)

\( \phi = \tan^{-1} \left (\dfrac{-26.52 }{40} \right ) \)

\( \phi = -33.5^{\circ}\)

Step 2: Find the time lag between the voltage maximum and the current maximum

For an RC circuit let, \(V= V_0 \cos \omega t\)

Voltage is maximum when \(t\) is zero.

Current in a RC circuit, \( I= I_0 \cos ( \omega t+ \phi)\)

Current is maximum when

\( \omega t+ \phi =0\)
\( \Rightarrow =t = - \dfrac{ \phi }{\omega }\) ....(i)

\( t= \dfrac{ -33.5 ^{\circ} \times \dfrac{ \pi} {180^{\circ} } }{2 \pi \times 60}\)

\( t= 1.55 \times 10^{-3} s \)

Final Answer: \(1.55~m s\)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon