Step 1: Find circuit impedance
Given,Vrms=240 V,f=50 Hz
L=0.50 H,R=100 Ω
The circuit impedance is given by Z=√R2+X2L=√R2+(ωL)2
Z=√R2+(2πfL)2
Z=√(100)2+(2π×50×0.5)2
Z=√(100)2+(157.07)2
Z=189.14 Ω
Step 2: Find maximum current
For an LR circuit if, V=V0sinωt
In LR circuit, current (I) lags from voltage (V).
I=I0sin(ωt−ϕ)
I=V0Zsin(ωt−ϕ)
Then the maximum current is,
I=V0Z
Where, V0=√2Vrms=240√2V
Hence from equation (i),
I0=240√2186.14=1.82 A
Final Answer: 1.82 A
(2)Step 1: Calculate phase angle
Given,,Vrms=240 V,f=50 Hz
L=0.50 H,R=100 Ω
Inductive reactance,
XL=ωL=2πfL
=2π×50×0.5=157.07 Ω
Now, from phasor diagram
tanϕ=XLR
ϕ=tan−1(157.07100)
ϕ=57.5∘
Step 2: Find the time lag between the voltage maximum and the current maximum
For an LR circuit let, V=V0cosωt
Voltage is maximum when t is zero.
Current in a LR circuit, I=I0cos(ωt−ϕ)
Current is maximum when
ωt−ϕ=0
⇒=t=ϕω ....(i)
t=57.5∘×π180∘2π×50
t=3.2×10−3s
Final Answer: 3.2×10−3s