1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Evaluation of a Determinant
1+cosθ 1 -cos...
Question
1
+
cos
θ
1
-
cos
θ
=
cosec
θ
+
cot
θ
2
Open in App
Solution
1
+
cos
θ
1
-
cos
θ
=
1
+
cos
θ
1
-
cos
θ
×
1
+
cos
θ
1
+
cos
θ
=
1
+
cos
θ
2
1
-
cos
θ
1
+
cos
θ
=
1
+
cos
θ
2
1
-
cos
2
θ
a
+
b
a
-
b
=
a
2
-
b
2
=
1
+
cos
θ
2
sin
2
θ
sin
2
θ
+
cos
2
θ
=
1
=
1
+
cos
θ
sin
θ
2
=
1
sin
θ
+
cos
θ
sin
θ
2
=
cosec
θ
+
cot
θ
2
Suggest Corrections
0
Similar questions
Q.
(i)
1
-
sinθ
1
+
sinθ
=
(
secθ
-
tanθ
)
2
(ii)
1
+
cosθ
1
-
cosθ
=
(
cosecθ
+
cotθ
)
2
Q.
Prove that:
1
-
cosθ
1
+
cosθ
=
(
cosecθ
-
cotθ
)
2
.
Q.
Prove that:
(
cosec
θ
+
cot
θ
)
2
=
sec
θ
+
1
sec
θ
−
1
.
Q.
Prove each of the following identities:
i
1
+
sin
θ
1
-
sin
θ
=
sec
θ
+
tan
θ
ii
1
-
cos
θ
1
+
cos
θ
=
cosec
θ
-
cot
θ
iii
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
Q.
Prove the following trigonometric identities.
1
-
cos
θ
1
+
cos
θ
=
cosec
θ
-
cot
θ