1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sum of Trigonometric Ratios in Terms of Their Product
1 + cos 56∘ ...
Question
1
+
cos
56
∘
+
cos
58
∘
−
cos
66
∘
=
m
cos
28
∘
cos
29
∘
sin
33
∘
. Find m
Open in App
Solution
1
+
cos
56
+
cos
58
−
cos
66
=
m
cos
20
cos
29
sin
33
=
m
cos
28
cos
29
sin
33
=
m
2
[
2
cos
28
cos
29
]
sin
33
=
m
2
[
cos
57
+
cos
1
]
sin
33
=
m
4
[
2
cos
57
sin
33
+
2
cos
1
sin
33
]
=
m
4
[
sin
(
90
)
+
(
sin
24
)
+
sin
34
−
sin
32
]
=
m
4
[
1
−
sin
24
o
+
sin
34
o
−
sin
32
o
]
=
m
4
[
1
−
cos
66
o
cos
56
o
−
cos
58
o
]
⇒
m
4
=
1
⇒
m
=
4
Hence the value of
m
is
4
Suggest Corrections
0
Similar questions
Q.
Prove that
1
+
cos
56
∘
+
cos
58
∘
−
cos
66
∘
=
4
cos
28
∘
cos
29
∘
sin
33
∘
.
Q.
If
−
1
+
cos
56
∘
+
cos
58
∘
+
cos
66
∘
=
k
sin
28
∘
sin
29
∘
sin
33
∘
, then the value of k is
Q.
1
+
c
o
s
56
∘
+
c
o
s
58
∘
−
c
o
s
66
∘
=
Q.
1
+
c
o
s
56
∘
+
c
o
s
58
∘
−
c
o
s
66
∘
=
[IIT 1964]