The given function is
1−cosx 1+cosx .
∫ 1−cosx 1+cosx dx (1)
Also, 1−cosx=2 sin 2 x 2 and 1+cosx=2 cos 2 x 2 (2)
From (1),
1−cosx 1+cosx = 2 sin 2 x 2 2 cos 2 x 2 = tan 2 x 2 = sec 2 x 2 −1 (3)
Hence, from (3), we get,
∫ 1−cosx 1+cosx dx = ∫ ( sec 2 x 2 −1 )dx = ∫ sec 2 x 2 dx − ∫ 1 dx =2tan x 2 −x+c
Thus, the integral of the function 1−cosx 1+cosx is 2tan x 2 −x+c.