1+cot2(sin-1x)=
12x
x2
1x2
2x
Explanation for the correct option:
Simplify using trigonometric identities
Let sin-1x=θ
⇒sinθ=x
Put the value of sin-1x in the given expression:
1+cot2(sin-1x)=1+cot2θ
=cosec2θ=1sin2θ Since,1+cot2θ=cosec2θ;cosec2θ=1sin2θ
Put the value of sinθ:
⇒1+cot2(sin-1x)=1x2
Hence, Option ‘C’ is Correct.