1+cos2π7+cos4π7+cos6π7 is equal to
1+cos2π7+cos4π7+cos6π7 =1+cos(2π7+6π7).sin(3×2π2×7)sin(2π2×7)[∵cosϕ+cos(α+ϕ)+cos(ϕ+2α)=cos(ϕ+ϕ+(n+1)α2)sin(n+1)α2sinα2] =1+cos4π7sin(3π7)sin(π7) =1−sin6π72sinπ7 =1−12=12