wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1)Evaluate the integral:
i)32x2.dx

2)Evaluate the integral:
ii)94x(30x32)2.dx

3)Evaluate the integral:
iii)21x(x+1)(x+2).dx

4)Evaluate the integral:
iv)π40sin3 2t cos 2t.dt

Open in App
Solution

1) 32x2.dx

First, we will solve using indefinite integral.

F(x)=x2.dx=x2+12+1=x33

Now,

32x2.dx

=F(3)F(2)

=323233=27383

=193

2) 94x(30x32)2.dx

First, we will solve using indefinite integral.

x(30x32)2.dx

Let 30x32=t Differentiating w.r.t.x both sides

32x12=dtdx

xdx=2dt3

Therefore

x.dx(30x32)2

=23dtt2

=23t2.dt

=23t=2330x32

t=30x32

Hence

F(x)=2330x32

94x30x322.dx

=F(9)F(4)

=23⎢ ⎢ ⎢ ⎢130(9)32130(4)32⎥ ⎥ ⎥ ⎥

=23[130271308]

=23[13122]

=23[2233(22)]

=23[193(22)]

=1999

3) 21x(x+1)(x+2).dx

F(x)=x(x+1)(x+2).dx

F(x)=2(x+1)(x+2)(x+1)(x+2).dx

F(x)

=2(x+1)(x+1)(x+2).dx

(x+2)(x+1)(x+2).dx

F(x)

=2(x+2).dx1(x+1).dx

F(x)=2log|x+2|log|x+1|

F(x)=log|x+2|2log|x+1|

F(x)=log(x+2)2x+1

Now,

21x(x+1)(x+2).dx=F(2)F(1)

​​​​​​​21x(x+1)(x+2).dx

=log(2+2)22+1log(1+2)21+1

=log163log92

=log163×29

=log3227

4) π40sin3 2t cos 2t.dt

F(x)=sin3 2t cos 2t.dt

Let sin 2t=x

F(x)= sin3 2t cos 2t.dt

Let sin 2t=x

Differentiating w.r.t.t

2cos 2t=dxdtcos 2t dt=dx2

sin32t cos2t.dt

=12x3.dx

=12×(x44)

=x48=(sin 2t)48

Hence,

F(t)=(sin 2t)48

π40sin3 2t cos 2t.dt

=F(π4)F(0)

=(sin2π4)48(sin2(0))48

​​​​​​​=(sinπ2)480

=(1)480

​​​​​​​=18










flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon