1) ∫32x2.dx
First, we will solve using indefinite integral.
F(x)=∫x2.dx=x2+12+1=x33
Now,
∫32x2.dx
=F(3)−F(2)
=323−233=273−83
=193
2) ∫94√x(30−x32)2.dx
First, we will solve using indefinite integral.
∫√x(30−x32)2.dx
Let 30−x32=t Differentiating w.r.t.x both sides
⇒−32x12=dtdx
⇒√xdx=−2dt3
Therefore
∫√x.dx(30−x32)2
=−23∫dtt2
=−23t−2.dt
=23t=23⎛⎜⎝30−x32⎞⎟⎠
⎡⎢⎣∵t=⎛⎜⎝30−x32⎞⎟⎠⎤⎥⎦
Hence
F(x)=23⎛⎜⎝30−x32⎞⎟⎠
∫94√x⎛⎜⎝30−x32⎞⎟⎠2.dx
=F(9)−F(4)
=23⎡⎢
⎢
⎢
⎢⎣130−(9)32−130−(4)32⎤⎥
⎥
⎥
⎥⎦
=23[130−27−130−8]
=23[13−122]
=23[22−33(22)]
=23[193(22)]
=1999
3) ∫21x(x+1)(x+2).dx
F(x)=∫x(x+1)(x+2).dx
⇒F(x)=∫2(x+1)−(x+2)(x+1)(x+2).dx
⇒F(x)
=∫2(x+1)(x+1)(x+2).dx
−∫(x+2)(x+1)(x+2).dx
⇒F(x)
=∫2(x+2).dx−∫1(x+1).dx
⇒F(x)=2log|x+2|−log|x+1|
⇒F(x)=log|x+2|2−log|x+1|
⇒F(x)=log∣∣∣(x+2)2x+1∣∣∣
Now,
∫21x(x+1)(x+2).dx=F(2)−F(1)
∫21x(x+1)(x+2).dx
=log∣∣∣(2+2)22+1∣∣∣−log∣∣∣(1+2)21+1∣∣∣
=log∣∣∣163∣∣∣−log∣∣∣92∣∣∣
=log∣∣∣163×29∣∣∣
=log∣∣∣3227∣∣∣
4) ∫π40sin3 2t cos 2t.dt
F(x)=∫sin3 2t cos 2t.dt
Let sin 2t=x
F(x)=∫ sin3 2t cos 2t.dt
Let sin 2t=x
Differentiating w.r.t.t
⇒2cos 2t=dxdt⇒cos 2t dt=dx2
∫ sin32t cos2t.dt
=12∫x3.dx
=12×(x44)
=x48=(sin 2t)48
Hence,
F(t)=(sin 2t)48
∫π40sin3 2t cos 2t.dt
=F(π4)−F(0)
=(sin2π4)48−(sin2(0))48
=(sinπ2)48−0
=(1)48−0
=18