(i) (5 + m)2
The given expression is of the form (a + b)2 .
Thus, we can use the identity (a + b)2 = a2 + 2ab + b2 .
∴ (5 + m)2 = (5)2 + 2 (5) (m) + (m)2
= 25 + 10m + m2
(ii) (11 − 2x)2
The given expression is of the form (a − b)2 .
Thus, we can use the identity (a − b)2 = a2 − 2ab + b2 .
∴ (11 − 2x)2 = (11)2 − 2 (11) (2x) + (2x)2
= 121 − 44x + 4x2
(iii) (7 − 3y)2
The given expression is of the form (a − b)2 .
Thus, we can use the identity (a − b)2 = a2 − 2ab + b2 .
∴ (7 − 3y)2 = (7)2 − 2 (7) (3y) + (3y)2
= 49 − 42y + 9y2
(iv) (6 − 5q) (6 + 5q)
The given expression is of the form (a + b) (a − b).
Thus, we can use the identity (a + b) (a − b) = a2 − b2 .
∴ (6 − 5q) (6 + 5q) = (6)2 − (5q)2
= 36 − 25q2
(v) (10 − 3b) (10 + 3b)
The given expression is of the form (a + b) (a − b).
Thus, we can use the identity (a + b) (a − b) = a2 − b2 .
∴ (10 − 3b) (10 + 3b)= (10)2 − (3b)2
= 100 − 9b2