wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1)Find the absolute maximum value and the absolute minimum value of the function in the given interval:
i) f(x)=x3,xϵ[2,2]

2)Find the absolute maximum value and the absolute minimum value of the function in the given interval:
ii) f(x)=sinx+cosx,xϵ[0,π]

3)Find the absolute maximum value and the absolute minimum value of the function in the given interval:
iii) f(x)=4x12x2,xϵ[2,92]

4)Find the absolute maximum value and the absolute minimum value of the function in the given interval:
iv) f(x)=(x1)2+3,xϵ[3,1]


Open in App
Solution

i) Given: f(x)=x3,xϵ[2,2]

Differentiation w.r.t x

f(x)=3x2

Putting f(x)=0

3x2=0

x2=0

x=0

So, x=0 is a critical point.

Checking the functional values at x=0 and end points x=2,2

We know, f(x)=x3

f(0)=0

f(2)=8

f(2)=8

Hence, the absolute maximum value of f(x) is 8 and the absolute minimum value of f(x) is 8

ii) Given: f(x)=sinx+cosx,xϵ[0,π]

Differentiation w.r.t x

f(x)=cosxsinx

Putting f(x)=0

cosxsinx=0

cosx=sinx

cotx=1

x=π4 [xϵ[0,π]]

So,

x=π4

is a critical point.

Checking the functional values at

x=π4

and end points x=0,π

We know, f(x)=sin x+cos x

f(π4)=sinπ4+cosπ4

f(π4)=12+12

f(π4)=22=2

f(0)=sin0+cos0=1

f(π)=sinπ+cosπ=1

Hence, the absolute maximum value of f(x) is 2 and the absolute minimum value of f(x) is 1

iii) Given:

f(x)=4x12x2

Differentiation w.r.t x

f(x)=412×2x

f(x)=4x

Putting f(x)=0

4x=0

x=4

So, x=4 is a critical point.
Checking the functional values at x=4 and end points

x=2,92

We know,

f(x)=4x12x2

f(4)=4(4)12(4)2

f(4)=1612×16

f(4)=168=8

f(2)=4(2)12(2)2

f(2)=812×4

f(2)=82=10

f(92)=4(92)12(92)2

f(4)=1812×814

f(4)=18818=638

Hence, the absolute maximum value of f(x)

is 8 and the absolute minimum value of f(x) is 10

iv) f(x)=(x1)2+3

Differentiation w.r.t x

f(x)=2(x1)

Putting f(x)=0

2(x1)=0

x=1

So, x=1 is a critical point.
Checking the functional values at x=1 and end points x=3,1

We know, f(x)=(x1)2+3

f(1)=(11)2+3=3

f(3)=(31)2+3

f(3)=16+3=19

Hence, the absolute maximum value of f(x) is 19 and the absolute minimum value of f(x) is 3.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon