i) Given: f(x)=x3,xϵ[−2,2]
Differentiation w.r.t x
f′(x)=3x2
Putting f′(x)=0
3x2=0
⇒x2=0
⇒x=0
So, x=0 is a critical point.
Checking the functional values at x=0 and end points x=−2,2
We know, f(x)=x3
f(0)=0
f(−2)=−8
f(2)=8
Hence, the absolute maximum value of f(x) is 8 and the absolute minimum value of f(x) is −8
ii) Given: f(x)=sinx+cosx,xϵ[0,π]
Differentiation w.r.t x
f′(x)=cosx−sinx
Putting f′(x)=0
⇒cosx−sinx=0
⇒cosx=sinx
⇒cotx=1
⇒x=π4 [∵xϵ[0,π]]
So,
x=π4
is a critical point.
Checking the functional values at
x=π4
and end points x=0,π
We know, f(x)=sin x+cos x
f(π4)=sinπ4+cosπ4
⇒f(π4)=1√2+1√2
⇒f(π4)=2√2=√2
f(0)=sin0+cos0=1
f(π)=sinπ+cosπ=−1
Hence, the absolute maximum value of f(x) is √2 and the absolute minimum value of f(x) is −1
iii) Given:
f(x)=4x−12x2
Differentiation w.r.t x
f′(x)=4−12×2x
⇒f′(x)=4−x
Putting f′(x)=0
4−x=0
⇒x=4
So, x=4 is a critical point.
Checking the functional values at x=4 and end points
x=−2,92
We know,
f(x)=4x−12x2
f(4)=4(4)−12(4)2
⇒f(4)=16−12×16
⇒f(4)=16−8=8
f(−2)=4(−2)−12(−2)2
⇒f(−2)=−8−12×4
⇒f(−2)=−8−2=−10
f(92)=4(92)−12(92)2
⇒f(4)=18−12×814
⇒f(4)=18−818=638
Hence, the absolute maximum value of f(x)
is 8 and the absolute minimum value of f(x) is −10
iv) f(x)=(x−1)2+3
Differentiation w.r.t x
f′(x)=2(x−1)
Putting f′(x)=0
⇒2(x−1)=0
⇒x=1
So, x=1 is a critical point.
Checking the functional values at x=1 and end points x=−3,1
We know, f(x)=(x−1)2+3
f(1)=(1−1)2+3=3
f(−3)=(−3−1)2+3
⇒f(−3)=16+3=19
Hence, the absolute maximum value of f(x) is 19 and the absolute minimum value of f(x) is 3.