wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1)Find the local maxima and local minima, if any, of the function. Find, also the local maximum & the local minimum values, as the case may be:
f(x)=x2

2)Find the local maxima and local minima, if any, of the function. Find, also the local maximum & the local minimum values, as the case may be:
g(x)=x33x

3) Find the local maxima and local minima, if any, of the function. Find, also the local maximum & the local minimum values, as the case may be:
h(x)=sinx+cosx,0<x<π2

4) Find the local maxima and local minima, if any, of the function. Find, also the local maximum & the local minimum values, as the case may be:
f(x)=sin xcos x,0<x<2π

5) Find the local maxima and local minima, if any, of the function. Find, also the local maximum & the local minimum values, as the case may be:
f(x)=x36x2+9x+15

6) Find the local maxima and local minima, if any, of the function. Find, also the local maximum & the local minimum values, as the case may be:
g(x)=x2+2x,x>0

7) Find the local maxima and local minima, if any, of the function. Find, also the local maximum & the local minimum values, as the case may be:
g(x)=1x2+2

8)4) Find the local maxima and local minima, if any, of the function. Find, also the local maximum & the local minimum values, as the case may be:
f(x)=x1x,0<x<1

Open in App
Solution

1) Given: f(x)=x2

Differentiating w.r.t x,

f(x)=2x

Putting f(x)=0

2x=0x=0

Again, Differentiating w.r.t x

f′′(x)=2>0

As f′′(x)>0,
so x=0 is point of local minima and there is no point of local maxima.

We know, x=0 is point of local minima, so the value of local minima is

f(0)=02=0

Thus, minimum value of f(x) is 0 and there is no maximum value.

2) Given: g(x)=x33x

Differentiating w.r.t x,

g(x)=3x23

Putting g(x)=0

3x23=0

3x2=3

x2=33=1

x=±1

Again, Differentiating w.r.t x

g′′(x)=6x0

=6x

When x=1,

g′′(x)=6<0

So, x=1 is point of local maxima

When x=1,

g′′(x)=6>0

So, x=1 is point of local minima

Thus, x=1 is point of local maxima and
g(x) has local minima at x=1
Local minimum value at x=1

g(x)=x33x

g(1)=(1)33(1)=2

Local maximum value at x=1

g(x)=x33x

g(1)=(1)33(1)=2

Thus, the Local maximum value of g(x) is 2 and Local
minimum value of g(x) is 2.

3) h(x)=sinx+cosx,0<x<π2

Differentiating w.r.t x,

h(x)=cosxsinx

Putting h(x)=0

cosxsinx=0

cosx=sinx

tanx=1

tanx=1

x=π4 [0<x<π2]

Again, Differentiating w.r.t x,

h′′(x)=sinxcosx

When x=π4:

h′′(π4)=sin(π4)cos(π4)

h′′(π4)=1212

h′′(π4)=22=2

Since h′′(π4)<0:

so, x=π4 is a point of local maxima
Local maximum value at x=π4 is :
f(x)=sinx+cosx

f(π4)=sin(π4)+cos(π4)

f(π4)=12+12

f(π4)=22

f(π4)=2

Thus, x=π4 is point of local maxima and the maximum value of h(x) is 2.

4) f(x)=sinxcosx,0<x<2π

Differentiating w.r.t x,

f(x)=cosx(sinx)

f(x)=cos x+sin x

Putting f(x)=0:

cos x+sin x=0

sin x=cos x

tan x=1

x=3π4,7π4 [0,x<2π]

Again, Differentiating w.r.t x,

f′′(x)=sin x+cos x

When x=3π4:
then f′′(3π4)=sin(3π4)+cos(3π4)

f′′(3π4)=1212

f′′(3π4)=22=2

As f′′(x)<0, When x=3π4

Thus x=3π4 is point of local maxima.
When x=7π4:
Then f′′(7π4)=sin(7π4)+cos(7π4)

f′′(3π4)=12+12

f′′(3π4)=12=2

As f′′(x)>0, when x=7π4 is point of local minima.
The local maximum value of
f(x) at x=3π4 is
f(x)=sinxcosx

f(3π4)=sin(3π4)cos(3π4)

f(3π4)=12+12

f(3π4)=12=2

The local minimum value of f(x) at x=7π4 is

f(x)=sinxcosx

f(7π4)=sin(7π4)cos(7π4)

f(7π4)=1212

f(7π4)=12=2

Hence, the Local maximum value of f(x) is 2 atx=3π4
and the Local minimum value of f(x) is 2 at

x=7π4

(5) f(x)=x36x2+9x+15

Differentiating w.r.t x,

f(x)=3x212x+9

f(x)=3(x24x+3)

f(x)=3(x3)(x1)

Putting f(x)=0

3(x3)(x1)=0

x=1,3

Again differentiating w.r.t x,

f(x)=6x12=6(x2)

When x=1:

f′′(1)=6(12)=6<0

As f′′(x)<0, when x=1

Thus x=1 is point of local maxima.

When x=3:

f′′(3)=6(32)=6>0

As f′′(x)>0, when x=3

Thus x=3 is point of local minima.

Local maximum value of f(x) at x=1

f(x)=x36x2+9x+15

f(1)=(1)36(1)2+9(1)+15

=16+9+15

=19

Local minimum value of f(x) at x=3

f(3)=(3)36(3)2+9(3)+15

=2754+27+15

=15

Hence, the Local maximum value of f(x) is 19 at x=1 and the Local minimum value of f(x) is 15 at x=3

(6) g(x)=x2+2x,x>0

Differentiating w.r.t x,

g(x)=122x2

Putting g(x)=0

122x2=0

x242x2=0

x2=4[x>0]

x=2[x>0]

Again differentiating w.r.t x,

g′′(x)=2[ddx(1x2)]

g′′(x)=2[2x3]=4x3

When x=2:

g′′(x)=423>0

As g′′(x)>0, when x=2

Thus x=2 is point of local minima.

Local minimum value of g(x) at x=2 is:
g(x)=x2+2x

g(2)=22+22=2

Hence, the Local minimum value of g(x) is 2 at x=2

(7) g(x)=1x2+2

Differentiating w.r.t x,

g(x)=ddx[(x2+2)1]

g(x)=(x2+2)11(2x)

g(x)=2x(x2+2)2

Putting g(x)=0

2x(x2+2)2=0

x=0

Using first derivative test, we get

x<0g(x)>0

x>0g(x)<0

So, x=0 is point of local maxima.
Local maximum value of g(x) at x=0 is

g(x)=1x2+2

g(0)=102+2=12

Hence, the Local maximum value of g(x) is 12

​​​​at x=0

(8) f(x)=x1x,0<x<1

Differentiation w.r.t x,

f(x)=ddx(x1x)

f(x)=x(121x)+1x

f(x)=x21x+1x

f(x)=x+2(1x)21x

f(x)=23x21x

Putting f(x)=0:

23x21x=0

23x=0 [0<x<1]

x=23

Using first derivative test, we get

x<23f(x)>0

x>23f(x)<0

So, x=23 is point of local maxima.
Local maximum value of f(x) at
x=23 is :
f(x)=x1x

f(23)=23123

f(23)=2313

f(23)=233

Hence, the Local maximum value of f(x) is

233 at x=23








flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon