1) Given: f(x)=x2
Differentiating w.r.t x,
f′(x)=2x
Putting f′(x)=0
2x=0⇒x=0
Again, Differentiating w.r.t x
f′′(x)=2>0
As f′′(x)>0,
so x=0 is point of local minima and there is no point of local maxima.
We know, x=0 is point of local minima, so the value of local minima is
f(0)=02=0
Thus, minimum value of f(x) is 0 and there is no maximum value.
2) Given: g(x)=x3−3x
Differentiating w.r.t x,
g′(x)=3x2−3
Putting g′(x)=0
3x2−3=0
⇒3x2=3
⇒x2=33=1
⇒x=±1
Again, Differentiating w.r.t x
g′′(x)=6x−0
=6x
When x=−1,
g′′(x)=−6<0
So, x=−1 is point of local maxima
When x=1,
g′′(x)=6>0
So, x=1 is point of local minima
Thus, x=−1 is point of local maxima and
g(x) has local minima at x=1
Local minimum value at x=1
g(x)=x3−3x
g(1)=(1)3−3(1)=−2
Local maximum value at x=−1
g(x)=x3−3x
g(−1)=(−1)3−3(−1)=2
Thus, the Local maximum value of g(x) is 2 and Local
minimum value of g(x) is −2.
3) h(x)=sinx+cosx,0<x<π2
Differentiating w.r.t x,
h′(x)=cosx−sinx
Putting h′(x)=0
cosx−sinx=0
⇒cosx=sinx
⇒tanx=1
⇒tanx=1
⇒x=π4 [∵0<x<π2]
Again, Differentiating w.r.t x,
h′′(x)=−sinx−cosx
When x=π4:
h′′(π4)=−sin(π4)−cos(π4)
⇒h′′(π4)=−1√2−1√2
⇒h′′(π4)=−2√2=−√2
Since h′′(π4)<0:
so, x=π4 is a point of local maxima
Local maximum value at x=π4 is :
f(x)=sinx+cosx
⇒f(π4)=sin(π4)+cos(π4)
⇒f(π4)=1√2+1√2
⇒f(π4)=2√2
⇒f(π4)=√2
Thus, x=π4 is point of local maxima and the maximum value of h(x) is √2.
4) f(x)=sinx−cosx,0<x<2π
Differentiating w.r.t x,
f′(x)=cosx−(−sinx)
⇒f′(x)=cos x+sin x
Putting f′(x)=0:
cos x+sin x=0
⇒sin x=−cos x
⇒tan x=−1
⇒x=3π4,7π4 [∵0,x<2π]
Again, Differentiating w.r.t x,
f′′(x)=−sin x+cos x
When x=3π4:
then f′′(3π4)=−sin(3π4)+cos(3π4)
⇒f′′(3π4)=−1√2−1√2
f′′(3π4)=−2√2=−√2
As f′′(x)<0, When x=3π4
Thus x=3π4 is point of local maxima.
When x=7π4:
Then f′′(7π4)=−sin(7π4)+cos(7π4)
⇒f′′(3π4)=1√2+1√2
⇒f′′(3π4)=1√2=√2
As f′′(x)>0, when x=7π4 is point of local minima.
The local maximum value of
f(x) at x=3π4 is
f(x)=sinx−cosx
f(3π4)=sin(3π4)−cos(3π4)
⇒f(3π4)=1√2+1√2
⇒f(3π4)=1√2=√2
The local minimum value of f(x) at x=7π4 is
f(x)=sinx−cosx
f(7π4)=sin(7π4)−cos(7π4)
⇒f(7π4)=−1√2−1√2
⇒f(7π4)=−1√2=−√2
Hence, the Local maximum value of f(x) is √2 atx=3π4
and the Local minimum value of f(x) is −√2 at
x=7π4
(5) f(x)=x3−6x2+9x+15
Differentiating w.r.t x,
f′(x)=3x2−12x+9
⇒f′(x)=3(x2−4x+3)
⇒f′(x)=3(x−3)(x−1)
Putting f′(x)=0
3(x−3)(x−1)=0
⇒x=1,3
Again differentiating w.r.t x,
f′(x)=6x−12=6(x−2)
When x=1:
f′′(1)=6(1−2)=−6<0
As f′′(x)<0, when x=1
Thus x=1 is point of local maxima.
When x=3:
f′′(3)=6(3−2)=6>0
As f′′(x)>0, when x=3
Thus x=3 is point of local minima.
Local maximum value of f(x) at x=1
f(x)=x3−6x2+9x+15
⇒f(1)=(1)3−6(1)2+9(1)+15
=1−6+9+15
=19
Local minimum value of f(x) at x=3
⇒f(3)=(3)3−6(3)2+9(3)+15
=27−54+27+15
=15
Hence, the Local maximum value of f(x) is 19 at x=1 and the Local minimum value of f(x) is 15 at x=3
(6) g(x)=x2+2x,x>0
Differentiating w.r.t x,
g′(x)=12−2x2
Putting g′(x)=0
12−2x2=0
⇒x2−42x2=0
⇒x2=4[∵x>0]
⇒x=2[∵x>0]
Again differentiating w.r.t x,
g′′(x)=−2[ddx(1x2)]
⇒g′′(x)=−2[−2x3]=4x3
When x=2:
g′′(x)=423>0
As g′′(x)>0, when x=2
Thus x=2 is point of local minima.
Local minimum value of g(x) at x=2 is:
g(x)=x2+2x
⇒g(2)=22+22=2
Hence, the Local minimum value of g(x) is 2 at x=2
(7) g(x)=1x2+2
Differentiating w.r.t x,
g′(x)=ddx[(x2+2)−1]
⇒g′(x)=−(x2+2)−1−1(2x)
⇒g′(x)=−2x(x2+2)2
Putting g′(x)=0
−2x(x2+2)2=0
⇒x=0
Using first derivative test, we get
x<0⇒g′(x)>0
x>0⇒g′(x)<0
So, x=0 is point of local maxima.
Local maximum value of g(x) at x=0 is
g(x)=1x2+2
⇒g(0)=102+2=12
Hence, the Local maximum value of g(x) is 12
at x=0
(8) f(x)=x√1−x,0<x<1
Differentiation w.r.t x,
f′(x)=ddx(x√1−x)
⇒f′(x)=x(−12√1−x)+√1−x
⇒f′(x)=−x2√1−x+√1−x
⇒f′(x)=−x+2(1−x)2√1−x
⇒f′(x)=2−3x2√1−x
Putting f′(x)=0:
2−3x2√1−x=0
⇒2−3x=0 [0<x<1]
⇒x=23
Using first derivative test, we get
x<23⇒f′(x)>0
x>23⇒f′(x)<0
So, x=23 is point of local maxima.
Local maximum value of f(x) at
x=23 is :
f(x)=x√1−x
⇒f(23)=23√1−23
⇒f(23)=23√13
⇒f(23)=23√3
Hence, the Local maximum value of f(x) is
23√3 at x=23