1) f(x)=|x+2|−1
We know,
|x+2|≥0
⇒|x+2|−1≥−1
⇒f(x)≥−1
Hence, minimum value of f(x) is −1 and there is no maximum value of f(x).
2) g(x)=−|x+1|+3
We know,
|x+1|≥0
⇒−|x+1|≤0
⇒−|x+1|+3≤3
⇒g(x)≤3
Hence, maximum value of g(x) is 3 and there is no minimum value of g(x).
3) h(x)=sin(2x)+5
We know,
sinθϵ[−1,1]
⇒sin2xϵ[−1,1]
⇒−1≤sin2x≤1
⇒−1+5≤sin2x+5≤1+5
⇒4≤sin2x+5≤6
⇒4≤h(x)≤6
Hence, Maximum value of h(x) is 6 & Minimum value of h(x) is 4
4) f(x)=|sin4x+3|
We know,
sinθϵ[−1,1]
⇒sin4xϵ[−1,1]
⇒−1≤sin4x≤1
⇒−1+3≤sin4x+3≤1+3
⇒2≤sin4x+3≤4
⇒2≤|sin4x+3|≤4
⇒2≤f(x)≤4
Hence, Maximum value of f(x) is 4 & Minimum value of f(x) is 2
5) h(x)=x+1,xϵ(−1,1)
As, f′(x)=1>0 (increasing function)
The minimum value occurs, when x=−1
The maximum value occurs, when x=1
But it’s not possible to locate such points because, xϵ(−1,1)
Thus, the given function has neither the maximum value nor minimum value.