1) Given,
f(x)=(2x−1)2+3
Differentiating w.r.t x,
f′(x)=4(2x−1)
Putting f′(x)=0
4(2x−1)=0
⇒2x−1=0
⇒x=12
So, critical point is x=12
Using first derivative test,
x<12⇒f′(x)<0
x>12⇒f′(x)>0
Since, at x=12
sign of f′(x) changes from negative to positive,
So, it is a point of Minima.
Now,
f(x)=(2x−1)2+3
Putting x=12:
f(12)=(2×12−1)2+3
=3
Hence, minimum value of f(x) is 3 and there is no maximum value of f(x).
2) f(x)=9x2+12x+2
Differentiating w.r.t x,
f′(x)=18x+12
⇒f′(x)=6(3x+2)
Putting f′(x)=0
6(3x+2)=0
⇒3x+2=0
⇒x=−23
So, critical point is x=−23
We know, f′(x)=18x+12
Again, Differentiating w.r.t x
f′′(x)=18>0
So, x=−23 is point of minima.
Now,
f(x)=9x2+12x+2
Putting x=−23
f(−23)=9(−23)2+12(−23)+2
=4−8+2
=−2
Hence, minimum value of f(x) is −2 and there is no maximum value.
3) f(x)=−(x−1)2+10
Differentiating w.r.t x,
f′(x)=−2(x−1)
Putting f′(x)=0
⇒−2(x−1)=0
⇒(x−1)=0
⇒x=1
So, critical point is x=1
we know, f′(x)=−2(x−1)
Again, Differentiating w.r.t x
f′′(x)=−2<0
So, x=1 is point of maxima
Now,
f(x)=−(x−1)2+10
Putting x=1
f(x)=−(1−1)2+10
=10
Hence, maximum value of f(x) is 10 and there is no minimum value of f(x)
4) g(x)=x3+1
Differentiating w.r.t x,
g′(x)=3x2
Putting g′(x)=0
3x2=0
⇒x=0
So, critical point is x=1
∵g′(x)=3x2
g′′(x)=6x
At x=0
g′′(0)=6×0=0
∴ Point x=0 is neither a point of local maxima nor a point of local Minima, it is a point of inflexion.
Hence, there is no minimum or maximum value.