wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(1) For any two complex numbers z1, z2 and any real numbers a, b, |az1bz2|2+|bz1+az2|2=

(2) The value of 25×9 is

(3) The number (1i)31i3 is
equal to

(4) The sum of the series i+i2+i3+...... upto 1000 terms is .

(5) Multiplicative inverse of (1+i) is

(6) If z1 and z2 are complex numbers such that z1+z2 is real number then .

(7) arg(z)+arg(¯¯¯z)(¯¯¯z0) is

(8) If |z+4|3, then the greatest and least value of |z+1| are and .

(9) If z2z+2=π6, then the locus of z is .

(10) If |z|=4 and arg(z)=5π6, then z=

A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
-15
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Im(z1)+Im(z2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
zero
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
E
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
F
-2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
G
z=23+2i
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
H
6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
I
(a2+b2)(|z1|2+|z2|2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
J
a circle
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
K
12i2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

(1)
Using the property,
|z1±z2|2=|z1|2+|z2|2±2Re(z1¯¯¯¯¯z2)

|az1bz2|2+|bz1+az2|2

=|az1|2+|bz2|22Re(az1ׯ¯¯¯¯¯¯bz2)+|bz1|2+|az2|2+2Re(bz1ׯ¯¯¯¯¯¯¯az2)

=|az1|2+|bz2|22Re(abz1¯¯¯¯¯z2)+|bz1|2+|az2|2+2Re(abz1¯¯¯¯¯z2)

=(a2+b2)|z1|2+(a2+b2)|z2|2

=(a2+b2)(|z1|2+|z2|2)

Hence,
|az1bz2|2+|bz1+az2|2=(a2+b2)(|z1|2+|z2|2)


(2)
25=1×25
=25i [i=1]
=5i

9=1×9
=9i
=3i

So, 25×9=5i×3i
=15i2
=15 [i2=1]

Hence, 25×9=15


(3)
(1i)31i3=(1i)31+i [i3=i]

=1i33i(1i)1+i
[(ab)3=a3b33ab(ab)]

=1+i3i+3i21+i

=132i1+i [i2=1]

=22i1+i

=2(1+i)1+i

=2


(4)
We know,
[in+in+1+in+2+in+3=0,where nN]
To find: i+i2+i3+...... upto 1000 terms
i.e. i+i2+i3+...+i1000
=(i+i2+i3+i4)+(i5+i6+i7+i8)+...+(i997+i998+i999+i1000)
=0+0+...+0
=0
Hence, the value of the required sum is 0.


(5)
Let z=1+i
Multiplicative inverse of z=1z

1z=11+i

1z=11+i×1i1i

1z=1i12i2

1z=1i1+i [i2=1]

1z=1i2

1z=12i2


(6)
Let z1=a+ib, z2=x+iy
Now,
z1+z2=(a+x)+i(b+y)

For z1+z2 is a real number, we get
b+y=0
Im(z1)+Im(z2)=0


(7)
arg(z)+arg(¯¯¯z)
=arg(z¯¯¯z)
[arg(z1)+arg(z2)=arg(z1z2)]
=arg(|z|2) [z¯¯¯z=|z|2]
=0 [|z|2 is real and positive]


(8)
Given: |z+4|3
|z+1|=|z+43|
|z+1||z+4|+|3| {|a+b||a|+|b|}
|z+1|3+3 {|z+4|3}
|z+1|6
So, the greatest value of |z+1| is 6
|z+1|||z+4||3||0
So, the least value of |z+1| is zero.
( Equality holds when |z+4|=3)


(9)
Given:z2z+2=π6 z2

Let z=x+iy

x+iy2x+iy+2=π6

|x2+iy||x+2+iy|=π6 [z1z2=|z1||z2|]

|x2+iy|=π|x+2+iy|
6(x2)2+(y)2=π(x+2)2+(y)2

Squaring on both sides, we get

36[(x2)2+y2]=π[(x+2)2+y2]

36[x2+44x+y2]=π[x2+4+4x+y2]

(36π2)x2+(36π2)y2(144+4π2+x)+4(36π2)=0

x2+y2(144+4π236π2)x+4=0
The above equation represents a circle.
Hence, the locus of z is a circle.


(10)
Given: |z|=4 and arg(z)=5π6
From polar form of a complex number, we get
z=|z|(cosθ+isinθ)

z=4(cos5π6+isin5π6)

z=4(cos(π5π6)+isin(π5π6))

z=4(cosπ6+isinπ6)

z=4(32+i12)

z=23+2i

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon