1−sin2θ1+cotθ−cos2θ1+tanθ
LHS=1−sin2θ1+cotθ−cos2θ1+tanθ
=1−sin2θ1+cosθsinθ−cos2θ1+sinθcosθ(∵cotθ=cosθsinθ,tanθ=sinθcosθ)
=1−sin2θsinθ+cosθsinθ−cos2θcosθ+sinθcosθ=1−sin3θsinθ+cosθ−cos3θcosθ+sinθ
=sinθ+cosθ−(sin3+cos3θ)sinθ+cosθ
=sinθ+cosθ−(sinθ+cosθ)(sin2θ+cos2θ−sinθcosθ)sinθ+cosθ
[Using a3+b3=(a+b)(a2+b2−ab)]
=(sinθ+cosθ)[1−(1−sinθcosθ)]sinθ+cosθ [Using sin2θ+cos2θ=1]
=sinθcosθ=RHS Hence proved.