wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1sin2θ1+cotθcos2θ1+tanθ

Open in App
Solution

LHS=1sin2θ1+cotθcos2θ1+tanθ

=1sin2θ1+cosθsinθcos2θ1+sinθcosθ(cotθ=cosθsinθ,tanθ=sinθcosθ)

=1sin2θsinθ+cosθsinθcos2θcosθ+sinθcosθ=1sin3θsinθ+cosθcos3θcosθ+sinθ

=sinθ+cosθ(sin3+cos3θ)sinθ+cosθ

=sinθ+cosθ(sinθ+cosθ)(sin2θ+cos2θsinθcosθ)sinθ+cosθ

[Using a3+b3=(a+b)(a2+b2ab)]

=(sinθ+cosθ)[1(1sinθcosθ)]sinθ+cosθ [Using sin2θ+cos2θ=1]

=sinθcosθ=RHS Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon