1) Functions f,g:R→R are defined, respectively, by f(x)=x2+3x+1,g(x)=2x–3, find
(i) fogf(x)=x2+3x+1, and g(x)=2x–3
(fog)(x)=f(2x–3)
(∵(fog)(x)=f(g(x))
=(2x–3)2+3(2x–3)+1
=4x2–12x+9+6x–9+1
(∵(a–b)2=a2–2ab+b2)
=4x2–6x+1
Therefore, (fog)(x)=4x2–6x+1
2) Given, f:R→R,g:R→R
f(x)=x2+3x+1, and g(x)=2x–3
(gof)(x)=g(x2+3x+1)
(∵(fog)(x)=f(g(x))
=2(x2+3x+1)−3
=2x2+6x−1
Therefore, (gof)(x)=2x2+6x−1
3) Given, f:R→R,g:R→R
f(x)=x2+3x+1, and g(x)=2x–3
(fof)(x)=f(x2+3x+1)
(∵(fof)x=f(f(x))
=(x2+3x+1)2+3(x2+3x+1)+1
=x4+9x2+1+6x3+6x+2x2+3x2 +9x+3+1
=x4+6x3+14x2+15x+5
(∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ca)
4) Given, f:R→R,g:R→R
f(x)=x2+3x+1, and g(x)=2x–3
(gog)(x)=g(2x–3)
(∵(gog)(x)=g(g(x)))
=2(2x−3)−3
=4x−9
∴(gog)(x)=4x−9