i) Checking commutattivity
Given thet ∗ is binary opertation defined on Q
Since, a∗b=a−b ∀ a,b ∈ Q
⇒ b∗a=b−a ∀ a,b ∈ Q
so, a∗b ≠ b∗a (∵ a−b ≠ b−a ∀ a,b ∈ Q)
Hence, ∗ is not commutative.
ii) Checking commutattivity
Given thet ∗ is binary opertation defined on Q
Since, a,b ∈ Q,a2,b2 ∈ Q
Now, a∗b=a2+b2
⇒ b ∗ a=b2+a2
⇒ a2 + b2=b2+a2
(∵ Addition is commutative for rational numbers)
⇒ a ∗ b=b+a ∀ a,b ∈ Q
Hence, is commutative.
iii) Checking commutattivity
Given thet ∗ is binary opertation defined on Q
a ∗ b=a+ab ∀ a,b ∈ Q
⇒ b ∗ a=b+ba ∀ a,b ∈ Q
Clearly,
a + ab ≠ b+ba for any a,b ∋ Q
∴ a∗b ≠ b∗a
Hence, ∗ is not commutative
iv) Checking commutattivity
Given thet ∗ is binary opertation defined on Q
a ∗ b=(a−b)2 ∀ a,b ∈ Q
⇒ b ∗ a=(b−a)2 ∀ a,b ∈ Q
∴ (a−b)2=(b−a)2
∴ a∗b=b∗a ∀ a,b ∈Q
Hence, ∗ is commutative