wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1+nC1cosθ+nC2cos2θ+........+nCncosnθ equals

A
(2cosθ2)ncosnθ2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2cos2nθ2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2cos2nθ2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(2cos2θ2)n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (2cosθ2)ncosnθ2
We know that, (1+x)n=1+nC1x+nC2x2+....+nCnxn
Substitute x=cosθ+isinθ
(1+cosθ+isinθ)n=1+nC1(cosθ+isinθ)+nC2(cosθ+isinθ)2+....+nCn(cosθ+isinθ)n

Now use Demoivre's theorem to RHS,
(2cos2θ2+2isinθ2cosθ2)n=1+nC1(cosθ+isinθ)+nC2(cos2θ+isin2θ)+....+nCn(cosnθ+isinnθ)

(2cosθ2)(cosθ2+isinθ2)n=(1+nC1cosθ+nC2cos2θ+...+nCncosnθ)+i(nC1sinθ+nC2sin2θ+...+nCnsinnθ)

(2cosθ2)(cosnθ2+isinnθ2)=(1+nC1cosθ+nC2cos2θ+...+nCncosnθ)+i(nC1sinθ+nC2sin2θ+...+nCnsinnθ)

Now equate the real parts from both sides,

1+nC1cosθ+nC2cos2θ+........+nCncosnθ=(2cosθ2)n(cosnθ2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon