The correct option is
A (2cosθ2)ncosnθ2We know that, (1+x)n=1+nC1x+nC2x2+....+nCnxn
Substitute x=cosθ+isinθ
(1+cosθ+isinθ)n=1+nC1(cosθ+isinθ)+nC2(cosθ+isinθ)2+....+nCn(cosθ+isinθ)n
Now use Demoivre's theorem to RHS,
(2cos2θ2+2isinθ2cosθ2)n=1+nC1(cosθ+isinθ)+nC2(cos2θ+isin2θ)+....+nCn(cosnθ+isinnθ)
⇒(2cosθ2)(cosθ2+isinθ2)n=(1+nC1cosθ+nC2cos2θ+...+nCncosnθ)+i(nC1sinθ+nC2sin2θ+...+nCnsinnθ)
⇒(2cosθ2)(cosnθ2+isinnθ2)=(1+nC1cosθ+nC2cos2θ+...+nCncosnθ)+i(nC1sinθ+nC2sin2θ+...+nCnsinnθ)
Now equate the real parts from both sides,
1+nC1cosθ+nC2cos2θ+........+nCncosnθ=(2cosθ2)n(cosnθ2)