1,ω, ω2 are cube roots of unity then11+2ω−11+ω+12+ω=
11+2ω=1ω+(−ω2)=1ω(1−ω)=ω21−ω
⎡⎣∵ω=1⇒ω2=1ω⎤⎦
−11+ω=1ω2=ω[∵ω3=1]
12+ω=11−ω2=1(1+ω)(1−ω)=−1ω2(1−ω)=−ω1−ω
Adding (1)+(2)+(3)
ω21−ω+ω+−ω1−ω=0
=0
1, ω, ω2 are the cube roots of unity then the roots of (x−1)3+8=0