1+cos2x+cos4x+cos6x=
2cosxcos2xcos3x
4sinxcos2xcos3x
4cosxcos2xcos3x
Noneofthese
Explanation for the correct option:
Find the sum of the series using trigonometric identities
1+cos2x+cos4x+cos6x=(1+cos2x)+(cos4x+cos6x)
=2cos2x+2cos6x+4x2cos6x-4x2 [∵cos2A=2cos2A−1andcosA+cosB=2cosA+B2cosA−B2]
=2cos2x+2cos5xcosx
=2cosx(cosx+cos5x)
=2cosx(2cos2xcos3x) ∵cosA+cosB=2cosA+B2cosA−B2
=4cosxcos2xcos3x
Hence, Option ‘C’ is Correct.
Solve : 13x+14x+12x+16x=5