1+cosπ81+cos3π81+cos5π81+cos7π8
12
14
18
116
Explanation for the correct option:
Step 1. Solve the given expression:
=1+cosπ81+cos3π81+cosπ-3π81+cosπ-π8
=1+cosπ81+cos3π81-cos3π81-cosπ8 ∵cos(π-θ)=-cosθ
=1+cos2π81+cos23π8
=sin2π81-cos2π2-π8
=sin2π8cos2π8 ∵1-cos2(π2-θ)=cos2θ
Step 2. Multiply and divide it by 4:
=14×2sinπ8cosπ82sinπ8cosπ8
=14×sinπ4sinπ4 ∵2sinθcosθ=sin2θ
=14×sin2π4
=14×122=18 ∵sinπ4=12
Hence, Option ‘C' is Correct.