(1+i)(2+ai)+(2+3i)(3+i)=x+iy,x,ybelongstoRandxequaly,thenaequal
5
-4
-5
4
Explanation for the correct option:
Step 1. Write the given expression:
(1+i)(2+ai)+(2+3i)(3+i)=x+iy
⇒2+2i+ai-a+6+9i+2i-3=x+iy
⇒ 5-a+(13+a)i=x+iy
Step 2. Equate real and imaginary parts:
⇒5-a=x,13+a=y
According to the question x=y
Therefore, 5-a=13+a
⇒ 2a=-8
⇒ a=-4
Hence, Option ‘B’ is Correct.
If (1+i)22−i=x+iy, find x+y.