1) Given f(x)=ex
Differentiating w.r.t x,
f′(x)=ex
Putting f′(x)=0
ex=0
This is not possible for any xϵR
∴f(x) does not have a maxima or minima.
2) Given g(x)=logx
Differentiation w.r.t x,
g′(x)=1x
Putting g′(x)=0
1x=0
This is not possible for any xϵR
∴g(x) does not have a maxima or minima.
3) given h(x)=x3+x2+x+1
Differentiation w.r.t x,
h′(x)=3x2+2x+1 Putting h′(x)=0
3x2+2x+1=0
Check Discriminant,
D=b2−4ac
⇒D=22−4×3×1
⇒D=−8<0
So, 3x2+2x+1>0 for all xϵR
∴h(x) does not have a maxima or minima.