wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1(sec2θ-cos2θ)+1(cosec2θ-sin2θ)(sin2θ cos2θ)=1-sin2θcos2θ2+sin2θ cos2θ

Open in App
Solution

LHS={1sec2θcos2θ+1cosec2θsin2θ}(sin2θcos2θ) ={cos2θ1cos4θ+sin2θ1sin4θ}(sin2θcos2θ) ={cos2θ(1cos2θ)(1+cos2θ)+sin2θ(1sin2θ)(1+sin2θ)}(sin2θcos2θ) =[cot2θ1+cos2θ+tan2θ1+sin2θ]sin2θcos2θ =cos4θ1+cos2θ+sin4θ1+sin2θ =(cos2θ)21+cos2θ+(sin2θ)21+sin2θ =(1sin2θ)1+cos2θ+(1cos2θ)21+sin2θ =(1sin2θ)2(1+sin2)+(1cos2θ)2(1+cos2θ)(1+sin2θ)(1+cos2θ) =cos4θ(1+sin2θ)+sin4θ(1+cos2θ)1+sin2θ+cos2θ+sin2θcos2θ=cos4θ+cos4θsin2θ+sin4θ+sin4θcos2θ1+1+sin2θcos2θ=cos4θ+sin4θ+sin2θcos2θ(sin2θ+cos2θ)2+sin2θcos2θ=(cos2θ)2+(sin2θ)2+sin2θcos2θ(1)2+sin2θcos2θ=(cos2θ+sin2θ)2-2sin2θcos2θ+sin2θcos2θ(1)2+sin2θcos2θ =12+cos2θsin2θ2cos2θsin2θ2+sin2θcos2θ =1cos2θsin2θ2+sin2θcos2θ =RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon