1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Relation between Trigonometric Ratios
1 2 θ-cos 2 θ...
Question
1
(
sec
2
θ
-
cos
2
θ
)
+
1
(
cosec
2
θ
-
sin
2
θ
)
(
sin
2
θ
cos
2
θ
)
=
1
-
sin
2
θcos
2
θ
2
+
sin
2
θ
cos
2
θ
Open in App
Solution
LHS=
{
1
sec
2
θ
−
cos
2
θ
+
1
cosec
2
θ
−
sin
2
θ
}
(
sin
2
θ
cos
2
θ
)
=
{
cos
2
θ
1
−
cos
4
θ
+
sin
2
θ
1
−
sin
4
θ
}
(
sin
2
θ
cos
2
θ
)
=
{
cos
2
θ
(
1
−
cos
2
θ
)
(
1+cos
2
θ
)
+
sin
2
θ
(
1
−
sin
2
θ
)
(
1
+
sin
2
θ
)
}
(
sin
2
θ
cos
2
θ
)
=
[
cot
2
θ
1
+
cos
2
θ
+
tan
2
θ
1
+
sin
2
θ
]
sin
2
θ
cos
2
θ
=
cos
4
θ
1
+
cos
2
θ
+
sin
4
θ
1
+
sin
2
θ
=
(
cos
2
θ
)
2
1
+
cos
2
θ
+
(
sin
2
θ
)
2
1
+
sin
2
θ
=
(
1
−
sin
2
θ
)
1
+
cos
2
θ
+
(
1
−
cos
2
θ
)
2
1
+
sin
2
θ
=
(
1
−
sin
2
θ
)
2
(
1
+
sin
2
)
+
(
1
−
cos
2
θ
)
2
(
1
+
cos
2
θ
)
(
1
+
sin
2
θ
)
(
1
+
cos
2
θ
)
=
cos
4
θ
(
1
+
sin
2
θ
)
+
sin
4
θ
(
1
+
cos
2
θ
)
1
+
sin
2
θ
+
cos
2
θ
+
sin
2
θ
cos
2
θ
=
cos
4
θ
+
cos
4
θ
sin
2
θ
+
sin
4
θ
+
sin
4
θ
cos
2
θ
1
+
1
+
sin
2
θ
cos
2
θ
=
cos
4
θ
+
sin
4
θ
+
sin
2
θ
cos
2
θ
(
sin
2
θ
+
cos
2
θ
)
2
+
sin
2
θ
cos
2
θ
=
(
cos
2
θ
)
2
+
(
sin
2
θ
)
2
+
sin
2
θ
cos
2
θ
(
1
)
2
+
sin
2
θ
cos
2
θ
=
(
cos
2
θ
+
sin
2
θ
)
2
-
2
sin
2
θ
cos
2
θ
+
sin
2
θ
cos
2
θ
(
1
)
2
+
sin
2
θ
cos
2
θ
=
1
2
+
cos
2
θ
sin
2
θ
−
2
cos
2
θ
sin
2
θ
2
+
sin
2
θ
cos
2
θ
=
1
−
cos
2
θ
sin
2
θ
2
+
sin
2
θ
cos
2
θ
=
RHS
Suggest Corrections
1
Similar questions
Q.
Prove the following trigonometric identities.
1
sec
2
θ
-
cos
2
θ
+
1
cosec
2
θ
-
sin
2
θ
sin
2
θ
cos
2
θ
=
1
-
sin
2
θ
cos
2
θ
2
+
sin
2
θ
cos
2
θ