1-tan2°cot62°tan152°-cot88°=
3
-3
2–1
1–2
Explanation for the correct option:
Step 1. Solve the given expression:
1−tan2°cot62°tan152°−cot88°
=1−tan2°tan(90°−62°)tan(180°−28°)−tan(90°−88°) ∵tan(90°-A)=cotA
=1−tan2°tan28°−tan28°−tan2° ∵tan(180°-A)=-tanA
Step 2. Divide numerator and denominator by 1−tan2°tan28°:
=-1tan2°+tan28°1−tan2°tan28°
=−1tan(2°+28°) ∵tan(A+B)=tanA+tanB1−tanAtanB
=−1tan30°
=−3
Hence, Option ‘B’ is Correct.