Prove: (1+tanθ+cotθ)(sinθ−cosθ)=secθcosec2θ−cosecθsec2θ
Lets take L.H.S and then equate it to R.H.S.
L.H.S=(1+tanθ+cotθ)(sinθ−cosθ)
=sinθ+tanθ sinθ+cotθ sinθ−cosθ−tanθ cosθ−cotθ cosθ
=sinθ+tanθ sinθ+cosθsinθ×sinθ−cosθ−sinθcosθ×cosθ−cotθcosθ
=sinθ+tanθ sinθ+cosθ−cosθ−sinθ−cotθ cosθ
=tanθsinθ−cotθcosθ
=sinθcosθ×1cosecθ−cosθsinθ×1secθ
=sinθ×1cosθ×1cosecθ−cosθ×1sinθ×1secθ
=1cosecθ×secθ×1cosecθ−1secθ×cosecθ×1secθ
=1cosec2θ×secθ−1sec2θ×cosecθ
=secθcosec2θ−cosecθsec2θ
=R.H.S
∴(1+tanθ+cotθ)(sinθ−cosθ)=secθcosec2θ−cosecθsec2θ