wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove: (1+tanθ+cotθ)(sinθcosθ)=secθcosec2θcosecθsec2θ

Open in App
Solution

Lets take L.H.S and then equate it to R.H.S.

L.H.S=(1+tanθ+cotθ)(sinθcosθ)

=sinθ+tanθ sinθ+cotθ sinθcosθtanθ cosθcotθ cosθ
=sinθ+tanθ sinθ+cosθsinθ×sinθcosθsinθcosθ×cosθcotθcosθ
=sinθ+tanθ sinθ+cosθcosθsinθcotθ cosθ
=tanθsinθcotθcosθ
=sinθcosθ×1cosecθcosθsinθ×1secθ

=sinθ×1cosθ×1cosecθcosθ×1sinθ×1secθ

=1cosecθ×secθ×1cosecθ1secθ×cosecθ×1secθ

=1cosec2θ×secθ1sec2θ×cosecθ

=secθcosec2θcosecθsec2θ

=R.H.S

(1+tanθ+cotθ)(sinθcosθ)=secθcosec2θcosecθsec2θ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon