wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1+tan2θ1+cot2θ=1+tanθ1-cotθ2=tan2θ

Open in App
Solution

Here, LHS=1+tan2θ1+cot2θ =sec2θcosec2θ =1cos2θ1sin2θ =sin2θcos2θ =tan2θAgain, LHS = 1tanθ1cotθ2 =1sinθcosθ1cosθsinθ2 ={(cosθsinθ)cosθ×sinθ(sinθcosθ)}2 ={(sinθcosθ)cosθ×sinθ(sinθcosθ)}2 =sinθcosθ2 =sin2θcos2θ =tan2θ

∴ LHS = RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon