1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Complementary Trigonometric Ratios
1+tan 2 θ 1+ ...
Question
1
+
tan
2
θ
1
+
cot
2
θ
=
1
+
tanθ
1
-
cotθ
2
=
tan
2
θ
Open in App
Solution
Here, LHS=
1
+
tan
2
θ
1+cot
2
θ
=
sec
2
θ
cosec
2
θ
=
1
cos
2
θ
1
sin
2
θ
=
sin
2
θ
cos
2
θ
=tan
2
θ
Again, LHS =
1
−
tan
θ
1
−
cot
θ
2
=
1
−
sin
θ
cos
θ
1
−
cos
θ
sin
θ
2
=
{
(
cos
θ
−
sin
θ
)
cos
θ
×
sin
θ
(
sin
θ
−
cos
θ
)
}
2
=
{
−
(
sin
θ
−
cos
θ
)
cos
θ
×
sin
θ
(
sin
θ
−
cos
θ
)
}
2
=
−
sin
θ
cos
θ
2
=
sin
2
θ
cos
2
θ
=tan
2
θ
∴ LHS = RHS
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
1
+
tan
2
θ
1
+
cot
2
θ
=
1
-
tan
θ
1
-
cot
θ
2
=
tan
2
θ