1) Given: Length x, width y
Also, length of a rectangle is decreasing at the rate of 5 cm/min
And the width is increasing at the rate of 4cm/min
So,
dxdt=−5 cm/min⋯(i)
dydt=4 cm/min⋯(ii)
Now, the perimeter of the rectangle is,
P=2x+2y
Differentiating w.r.t. t, we get
dPdt=ddt(2x+2y)
=2(dxdt+dydt)
From (i) and (ii), we get
⇒dPdt=2(−5+4)=−2 cm/min
Hence, perimeter is decreasing at the rate of 2 cm/min.
2) Given: Length x, width y
Also, length of a rectangle is decreasing at the rate of 5 cm/min
And the width is increasing at the rate of 4 cm/min
So,
dxdt=−5cm/min⋯(i)
dydt=4cm/min⋯(ii)
Now, the perimeter of the rectangle is,
A=xy
Differentiating w.r.t. t, we get
dAdt=ddt(xy)
=xdydt+ydxdt
From (i) and (ii), we get
⇒dAdt=x(4)+y(−5)
⇒dAdt=4x−5y
When x=8 cm and y=6 cm
⇒dAdt=32−30=2 cm2/min
Hence, the area is increasing at the rate of 2 cm2/min, when x=8 cm and y=6 cm.