1. Given, initially (t=0) the position of the particle (Displacement), x=1 cm
Initial velocity, v=ω cm/s
It is given that
x(t)=Acos (ωt+ϕ)
⇒1=Acos (0+ϕ)
Acos ϕ=1.....…(i)
v(t)=d(x)dt=−Aωsin(ωt+ϕ)
At t=0,v=ω, therefore,
ω=−Aωsin(0+ϕ)
Asin ϕ=−1......…(ii)
From equation (i) and (ii),
A2sin2ϕ+A2cos2ϕ=2
A2(sin2ϕ+cos2ϕ)=2
A2=2
A=√2 cm
From equation (i) and (ii)
tanϕ=−1
∴ϕ=3π/4,7π/4,...
2. If SHM is,
x=B sin(ωt+α)
1=B sin(0+α)
⇒Bsinα=1......... (i)
v(t)=d(x)dt=Bωcos (ωt+α)
At t=0, v=ω, therefore,
ω=Bω cos (0+α)
Bcosα=1..........(ii)
From equation (i) and (ii),
B2sin2α+B2cos2α=2
B2(sin2α+cos2α)=2
B2=2
B=√2 cm
From equation (i) and (ii),
tanα=1
α=tan−1(1)
∴ α=π/4,5π/4,...